
Journal of Statistical Physics, Vol. 128, Nos. 1/2, July 2007 ( C© 2007 )
DOI: 10.1007/s10955-006-9238-0

Loss- and Gain-of-Function Mutations in Cancer:
Mass-action, Spatial and Hierarchical Models

Natalia L. Komarova1

Received March 24, 2006; accepted October 9, 2006
Published Online December 2, 2006

We study the stochastic dynamics of the two most common patterns in cancer initiation
and progression: loss-of-function and gain-of-function mutations. We consider three
stochastic models of cell populations with a constant size: a mass-action model, a
spatial model and a hierarchical model. For gain-of-function mutations, we calculate
the probability of mutant fixation starting from one mutant cell. For loss-of-function
mutations, we calculate the rate of production of double-hit mutants. It turns out that
the results are different in all models. This suggests that simple mass-action models are
often misleading when studying cancer dynamics. Moreover, our results also allow us
to think about various types of tissue architecture and its protective role against cancer.
In particular, we show that hierarchical tissue organization lowers the risk of cancerous
transformations. Also, cellular motility and long-range signaling can decrease the risk
of cancer in solid tissues.

KEY WORDS: Tumor suppressor genes, oncogenes, homeostatic control, stem cells,
Moran process, stochastic tunneling, nearest neighbor interactions, finite branching
process

1. INTRODUCTION

Cancer is a very complex process which can be studied on several spatial scales.
Subcellular, molecular processes such as mutations, chromosomal changes, as well
as intracellular signaling, happen on the subcellular scale. They are responsible
for malignant transformations that turn a healthy cell into a malignant one. Cells
in an organ are not independent of each other. They interact by means of direct
cell-to-cell signaling as well as through the process of selection; they compete
for space and nutrients. The resulting dynamics happen on the cellular level. The
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macroscopic description, or the organismal scale, is appropriate when studying a
larger population of cancerous cells, which can be viewed as a continuum. The
largest scale is the inter-organismal, or population scale. There, people study the
epidemiology and statistics of cancer.

In this paper we will focus on the impact of intracellular processes on the next
level of dynamics, the cellular level. We will examine the result of mutations and
other molecular changes inside cells on the cellular dynamics of cancer initiation
and progression. We will study the spread of mutated cells through a population
of wild-type cells and investigate how the fitness properties of the mutants affect
the probability and timing of mutant takeover.

1.1. Loss- and Gain-of-Function Mutations

By means of statistical analysis of the cancer retinoblastoma, Alfred
Knudson came up with the “two-hit” hypothesis as a genetic mechanism of
carcinogenesis.(16) Since then a two-hit mechanism has been found responsi-
ble for many cancers. The genes involved are termed tumor suppressor genes
(TSG).(36,37) They are defined as genes whose protein product limits tumor growth
(by inhibiting cellular growth or inducing cell death). When a TSG is mutated,
the mutant allele acts as a recessive: as long as the cell contains a normal allele,
tumor suppression continues. More than a hundred TSGs have been discovered.
For example, inactivation of the Rb gene leads to retinoblastoma, and inactivation
of the APC gene is one of the earliest events in colorectal cancers. Other tumor
suppressor genes are p53 (it is inactivated in many cancers), and BRC1 and BRC2
(breast cancer).(36)

The inactivation of a TSG is an example of a “loss-of-function” mutation.(33)

Upon the first hit, when one of the copies of the TSG is inactivated, the fitness of
the cell is similar to that of wild-type cells, because there is still one functional
copy of the TSG remaining. However, a second inactivating hit in such a cell will
lead to a drastic increase in the fitness as the TSG is now completely turned off.

Another common event is a “gain-of-function” mutation (see e.g. Ref. 33)
which activates an oncogene. An oncogene is a modified gene that increases the
malignancy of a tumor cell, e.g. the RAS oncogene found in colon cancer,(36) and
the Brc-Abl fusion gene found in chronic myeloid leukemia.(13) The corresponding
cells have an advantageous phenotype and have a tendency to expand.

1.2. Mutation-Selection Diagrams

We can represent the process of a loss-of-function mutation by means of a
mutation-selection diagram:

A(1) →u B(r ) →u1 C(R). (1)



Loss- and Gain-of-Function Mutations in Cancer 415

Here, type “A” is the wild type, type “B” represents the phenotype with one copy
of the TSG inactivated (and the fitness r is similar or equal to that of type “A”), and
type “C” has no functioning copies of the TSG, and an increased fitness, R > 1.
We will refer to diagram (1) as the two-species model.

Processes described by diagram (1) can also be discussed in the context of the
phenomenon of genetic instability.(22) If the first mutation, “A” → “B,” is an event
by which a cell acquires an unstable, mutator phenotype,(24,25) then the fitness of
type “B” (the unstable cells) could be equal to that of the wild type. Alternatively,
it could be lower,(19,21) because instability results in a higher chance to create
non-viable offspring, and thus confers a disadvantage to the cell. However, the
next event could happen at an accelerated rate, u1, and leads to a fast generation
of type “C” cells, which may have a selective advantage.

A gain-of-function mutation (e.g. the activation of an oncogene) can be
described by the following simple diagram:

A(1) →u B(r ). (2)

Here, type “A” is the “wild type,” “B” is the type with a mutated oncogene, and u
is the rate of mutation. The fitness of type “B” is denoted by r and it is larger than
the fitness of type “A” (which is normalized to 1).

Diagrams (1) and (2) of course do not uniquely define the dynamics of
the populations of cells. To make the description complete, we need to make
assumptions on the underlying processes of cellular birth, death and mutations.

1.3. Three Stochastic Models

We assume that the size of the cell population remains constant, and consider
three different models of homeostasis maintenance: (1) a mass-action model, (2)
a spatial model and (3) a hierarchical model. The first model assumes a spatially
homogeneous cellular population. The second model includes spatial locations of
cells. Unlike the first two models, the third model distinguishes between stem and
daughter cells (with spatial locations included implicitly, inasmuch as the cell’s
position in the cell hierarchy correlates with its spatial location).

We will ask two specific questions: (i) For gain-of-function mutations, what
is the rate of fixation of mutants depending on their relative fitness and the total
number of cells in the constant population? (By fixation we mean the absorbing
state where all cells are mutant). (ii) For loss-of-function mutations, what is the
rate of generation of double-hit mutants, depending on the fitness of single-hit
mutants, mutation rates and the total number of cells?

We will show that cellular dynamics of loss-of-function and gain-of-function
mutations is quite different in the three models, and suggest how this relates to the
protective function of tissue architecture.
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This paper is organized as follows. In Sec. 2 we describe the mass-action
model, in Sec. 3 we introduce the spatial model, in Sec. 4 we study the hierarchical
model, and in Sec. 5 we compare the dynamics corresponding to the different
models. Section 6 contains discussion.

2. A MASS-ACTION MODEL

Inspired by Knudson’s two-hit hypothesis,(16) Moolgavkar(29) has created
a mathematical two-hit model which describes the probability of accumulation
of two mutations in a population of cells. Initially the theory was limited to
an exponentially growing (on average) population, and later it was modified to
include other laws of overall population growth,(12) and extended to multi-hit
scenarios.(27) For two hits (of which the second one is highly advantageous) some
interesting analytical results on the hazard function have been obtained.(9) Many
other stochastic models have been proposed, including Refs. 23, 30, 34, 35. A
common feature of all these models is that cells are assumed to interact with one
another regardless of their spatial location. We term such models “mass-action
models.” In this section, we will review the mass-action model of Ref. 19, which
assumes a population with a constant number of cells.

2.1. Model Definition

Each of the N cells in a spatially homogeneous population belongs to one of
the three types, “A,” “B” or “C.” The dynamics is governed by a stochastic process
described below. The cells can divide (possibly with mutations) and die. The rate
of cellular division is governed by their relative fitness. The fitness is the same
for all cells of a given type; it is different for cells of different types. We take the
fitness of type “A” to be 1 (this sets the time-scale of the process). Relative to this,
the fitness of type “B” is r and the fitness of type “C” is R. We assume that R � 1,
and r can be smaller or equal to 1. The mutation network is given by diagram (1).
Note that we do not allow back mutations. Each time a cell dies, it is immediately
replaced by means of a cell division, so that the population size is kept constant.
Cells are chosen for death at random. Reproduction happens proportional to the
cells’ fitness.

We say that the system is in the state j , 0 ≤ j ≤ N if (1) the number of cells
of type “B” is equal to j and (2) there are no cells of type “C” present. In order
to account for the production of double-mutants (cells of type “C”), we add state
j = E to the system. j = E means that there is at least one cell of type “C” in
the population. We assume that this state is absorbing, that is, once one mutant
of type “C” is produced, it will take over the population (this is equivalent to the
assumption R → ∞).
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The stochastic process which governs the cellular dynamics is a Markov,
continuous-time, discrete state-space process. It is a linear birth-death process with
mutations; formal analyses of aspects of linear processes and several examples
can be found in e.g. Ref. 15. During an infinitesimally short time-interval, �t , one
of the following processes will happen:

• Transition j → j + 1 with probability �t P j→ j+1, where

Pj→ j+1 = N − j

N

r j(1 − u1)

N − j + r j
+ N − j

N

(N − j)u

N − j + r j
, 0 ≤ j ≤ N − 1.

(3)
Here, the first term is the probability for a cell of type “A” to be chosen
for death times the probability for a cell of type “B” to be chosen for
reproduction and reproduce faithfully. The second term is the probability
of death of a type “A” cell times the probability for a cell of type “A” to
reproduce with a mutation.

• Transition j → j − 1 with probability �t P j→ j−1, where

Pj→ j−1 = j

N

(N − j)(1 − u)

N − j + r j
, 1 ≤ j ≤ N . (4)

Here, we multiply the probability of a cell of type “B” to die by the
probability of a cell of type “A” to reproduce without a mutation.

• Transition j → E with probability �t P j→E , where

Pj→E = r ju1

N − j + r j
, 0 ≤ j ≤ N , (5)

which is just the probability for a cell of type “B” to be chosen for repro-
duction and to reproduce with a mutation. It does not matter which cell
type is chosen for death in this case. We also have

• E → E with probability 1 and j → j for j �= E with probability 1 −
�t(Pj→ j+1 + Pj→ j−1 + Pj→E ).

All other transitions have zero probability. These transition rates completely
define the Markov process.

2.2. Probability of Mutant Fixation in the Two-Species Model

We start our analysis with a review of simple but important results on the
dynamics of gain-of-function mutations, see the two-species model of diagram
(2).

Let us first consider a system where all mutations are suppressed (u = 0).
We start from one cell of type “B” ( j = 1). The states reachable from j = 1 are
j ∈ {0, 1, . . . , N }, and there are two absorbing states: j = 0 (extinction of type
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“B”) and j = N (fixation of type “B”). The first question we would like to address
is the following: what is the probability that starting from one mutant of type “B,”
the system will get absorbed in state j = N? It can be calculated by standard
methods. Let us suppose that πi is the probability to get absorbed in state N
starting from state i . We have

πi = 1 − 1/r i

1 − 1/r N
. (6)

In the following analysis we will use the quantity

π1 ≡ ρ(r ) = 1 − 1/r

1 − 1/r N
. (7)

We have ρ(r ) = 1/N for r = 1, which can also be shown from simple symmetry
considerations.

Next, let us include the possibility of mutations from “A” to “B,” that is, u > 0.
There is only one absorbing state in this system, j = N . The time of absorption
can be approximated by

Tabs = (uρ)−1. (8)

Indeed, the average number of new mutations arising in a unit time is given by
u. Out of these, the fraction ρ, Eq. (7), will proceed to fixation. If mutations are
rare, then the production of new mutants can be considered independent of the
dynamics of the existing mutants. Therefore, the rate of fixation is a composite
of the production of mutations, u, and the probability for each mutant to reach
fixation, ρ. The typical time of absorption is the reciprocal of that.

Formula (8) holds if the mutation rate is sufficiently small (or, if the population
size is not too large). The precise condition for this was derived in Ref. 19. This
condition is equivalent to the statement that the characteristic time for a mutant to
reach fixation is a lot smaller than a characteristic time of mutant production. For
neutral mutants, such that |1 − r | 	 1/N , this amounts to

N 	 Ncg = 1/u, (9)

and for disadvantageous mutants, such that r < 1 and |1 − r | � 1/N , the condi-
tion is weaker,

N 	 Ncg = r−(N−1)

u
. (10)

Here, the subscript “cg” stands for “coarse-grained”; this term will be explained
below. Note that condition (9) is a sufficient condition for both cases; condition
(9) follows from condition (10) for r close to one.
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2.3. Three-Species Dynamics: A Coarse-Grained Description

Let us now consider the dynamics of loss-of-function mutations, the three-
species model of diagram (1). We will investigate the process of fixation in the
state E , which is the only absorbing state of system (1).

Note that the full stochastic system under consideration evolves in a large
state space, j ∈ {E, 0, 1, . . . , N }. The dynamics is governed by the (N + 2) ×
(N + 2) transition matrix defined in Eqs. (3–5). It is possible to show that under
certain circumstances, the dynamics can be approximately described by means of
a reduced system with only a small number of “long-lived,” homogeneous states.

Let us denote the probability to find the system in state j = 0 by x0(t), the
probability to find it in state j = N by x1(t) and the probability to find it in state
j = E by x2(t). Here, x0 and x1 correspond to the all “A” and all “B” states, and
x2 corresponds to the at least one cell of type “C” state. The subscripts refer to the
number of mutations (0, 1 or 2) that each type of cells has.

It is possible to show that if the mutation rate is sufficiently small, condition
(10), we have

x0 + x1 + x2 = 1 − O(1/N ). (11)

In other words, if mutations are rare, the system spends most of the time in one
of the three long-lived states. This suggests the following way to simplify the
analysis. We describe the dynamics as a sequence of Markovian hops between
states x0, x1 and x2, with some (time-constant) rates, R0→1, R1→2 and R0→2.
We will refer to this simplified description as the coarse-grained dynamics. The
Kolmogorov-forward equation for this reduced, coarse-grained system, reads:

ẋ0 = −R0→1x0 − R0→2x0, (12)

ẋ1 = R0→1x0 − R1→2x1, (13)

ẋ2 = R1→2x1 + R0→2x0, (14)

with the initial condition

x0(0) = 1, x1(0) = x2(0) = 0.

Note that since we only have unidirectional mutations, no positive rates other than
R0→1, R1→2 and R0→2 can exist among these three states. System (12–14) is a
simple linear system of ODEs, with constant coefficients. Note that here and in
what follows we use the generation time-scale. That is, we scale time with N , the
total number of cells, so that we have on average N cell-divisions per time-unit.
This is equivalent to introducing a new time variable t̃ = Nt ; in what follows the
tildes are omitted.

From an intuitive standpoint, the simplification procedure leading to system
(12–14) is justified as long as the transitions among intermediate states (states
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other than x0,1,2) are much faster than the time scale of interest, that is, the time-
scale of transition between states in the reduced state-space, x0, x1 and x2. Let us
give an intuitive derivation of condition (9) for the coarse-grained description to
be valid in the case of neutral mutations (the argument can be easily extended to
mutants with fitness r < 1, inequality (10)). Let us set u1 = 0 for the moment. The
rate of mutant production is Nu (again, the time has been scaled by N ). The rate
of production of successful mutants is Nuρ, and thus the typical waiting time until
fixation is Twait = (Nuρ)−1. On the other hand, it takes about Tfix = N time-steps
for a mutant of type “B” to get fixated. Taking ρ = 1/N in the neutral case, we can
see that Twait � Tfix is equivalent to condition (9). Turning the second mutations
rate back on, u1 > 0, we can see that condition u1 	 1 is enough to ensure that
transition x0 → x2 is slow. The formal analysis involves comparing eigenvalues
of the corresponding transition matrices; for details we refer to Appendix C and
D in Ref. 19.

Constants R0→1, R1→2 and R0→2 in system (12–14) characterize the tran-
sitions between the three long-lived states. The first two rates, R0→1, R1→2, are
found easily. Indeed, the rate R0→1 is given by

R0→1 = Nuρ, (15)

where the constant probability of mutant fixation, ρ , appears in formula (8). The
rate R0→1 reflects the production of mutants followed by their successful fixation.
The rate R1→2 is obtained similarly, except the probability of fixation of mutants
of type “C” is considered to be equal to 1, yielding

R1→2 = Nu1. (16)

The processes reflected in constants R0→1 and R0→2 are shown in Fig. 1(a). First
the system gets into the all “B” state, after which another mutation brings it to the
all “C” state. We will call this scenario a genuine two-step process.

The third constant appearing in system (12–14), R0→2, has the meaning of
tunneling: the system reaches the all “C” state without first pausing at the all “B”
state, see Fig. 1(b).

2.4. The Tunneling Rate in the Mass-Action Model

In order to calculate the rate at which tunneling occurs, we will use the
approximation of a doubly-stochastic process. Starting with all cells in state “A,”
let us denote the probability to have a double mutant at time t as P2(t). We will
view the stochastic process as a sequence of subprocesses, each of which is a
mutation generating one cell of type “B,” and its subsequent evolution. Each such
subprocess describes the lineage starting with a single mutant of type “B.” We will
assume that these lineages are independent, that is, the total number of mutants of
type “B” is small compared to N . This assumption holds most of the time unless
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Fig. 1. Typical dynamics of cells. The thin solid line corresponds to the number of cells of type “A,”
the dashed line is type “B” and the thick solid line is type “C.” (a) A two-step process, where fixation
of type “B” is followed by fixation of type “C,” (b) Tunneling, where fixation of type “B” does not
occur.

a mutant of type “B” reaches fixation, in which case we have a two-step process
with rates R0→1 and R1→2. The exact condition for tunneling to be important is
given below. If P1(t) is the probability to obtain a double mutant by time t within
a lineage starting from 1 cell of type “B,” then we have, under the assumption of
independence of different lineages,

P2(t) = 1 − exp

[
−uN

∫ t

0
P1(t ′)dt ′

]
(17)

(see e.g. Ref. 31 for a derivation). The probability P1(t) was calculated by Ref. 19
and then by Ref. 14. The function P1(t) is a monotonically increasing func-
tion of time, which starts off as a linear function and then reaches a saturation
level, P∞

1 . It turns out that it is the saturation level that gives the main con-
tribution to the integral in (17), see below. Here we develop a concise and in-
structive method for calculation of P∞

1 , which we will later use for the spatial
model.

For the number of cells of type “B” we have a one-dimensional Markov
process. The state j = 0 corresponds to extinction, which is an absorbing state.
An additional absorbing state, j = E , is included to indicate that a cell of type “C”
has been produced. The transition probabilities are given by formulas (3), (4) and
(5). The main feature of tunneling is that fixation of the type “B” does not occur.
In fact, for most realizations, the number of cells of type “B” is small compared to
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N . Using this fact, the expressions for transition rates can be simplified to yield,

Pj→ j+1 = λ j, Pj→ j−1 = µj, Pj→E = β j. (18)

These transition coefficients are obtained by taking the highest order term in the
expansion of coefficients (3), (4) and (5) in terms of the small parameter j/N :

λ = r (1 − u1), µ = 1, β = u1r.

Note that an extra term N contained in the denominator in formulas (3), (4) and
(5) is canceled by using the generation time-scale. For generality purposes we will
carry out all the calculations for general constant values of λ, µ and β.

Let us denote by ξi (t)�t the probability to jump to state E during the time
interval (t, t + �t), given that at time 0 we are in state i . This function satisfies
the following equation:

ξ̇i = λiξi+1 + µiξi−1 + βiξE − i(λ + µ + β)ξi , 2 ≤ i.

The boundary condition is given by

ξ̇1 = λξ2 + µξ0 + βξE − (λ + µ + β)ξ1,

with ξ0(t) = ξE (t) = 0. The initial condition is

ξi (0) = iβ. (19)

Let us take the Laplace transform of the ODE, where

Lξi (t) = fi (s).

Using Lξ̇i = s fi − ξi (0), we obtain the following system of equations,

i[λ fi+1 + µ fi−1 − (λ + µ + β) fi ] − fi s = −iβ, i > 1, (20)

[λ f2 − (λ + µ + β) f1] − f1s = −β. (21)

In order to obtain P1(t), the mutation probability in each lineage, we would
need to find f1(s) (we start from one cell of type “B”), and evaluate L−1[ f1(s)/s].
Indeed, the cumulative probability P1(t) is related to the function ξ1(t) as ξ1 = d P1

dt .
Therefore their Laplace transforms differ by a factor s. However, it is the value
P∞

1 = limt→∞ P1(t) that gives the main contribution to probability (17)), see
below. This value is given simply by P∞

1 = f1(0). We can solve system (20–21)
analytically in the special case where s = 0. We have,

λ fi+1 + µ fi−1 − (λ + µ + β) fi = −β, i > 1, (22)

[λ f1 − (λ + µ + β) f1] = −β. (23)

The general solution is given by

fi = 1 + Aαi
− + Bαi

+,



Loss- and Gain-of-Function Mutations in Cancer 423

where the numbers α± are the roots of the quadratic equation, λα2 − (λ + µ +
β)α + µ = 0. We can see that α+ > 1 and 0 < α− < 1. Using the boundary
condition for f1 and boundedness of fi , we obtain A = −1 and B = 0, such that
fi = 1 − αi

−, and

f1(0) = 1 − 1

2λ
(λ + µ + β −

√
(λ + µ + β)2 − 4λµ).

We will consider the following two limiting cases:

• The mutant “B” is negatively selected, that is, µ > λ and β(λ + µ) 	
(λ − µ)2. In this case, α− = 1 − β

µ−λ
and f1(0) =

P∞
1 = β

µ − λ
= ru1

1 − r
. (24)

• The mutant “B” is neutral, that is, β(λ + µ) � (λ − µ)2. In this case we
obtain α− = √

β/λ and the tunneling rate,

P∞
1 =

√
β/λ = √

u1. (25)

In order to estimate expression (17), we need to know the time-scale of change
of the function P1(t). It approaches its saturation level around the time tc ∼ √

βλ

in the case of neutral mutants and tc ∼ µ − λ in the case of disadvantageous
mutants (see the derivation in Ref. 38 or in Ref. 17).

The time-scale of interest is when the expression in the exponent of (17)
becomes of the order one,

uN

∫ t

0
P1(t ′) dt ′ ∼ 1.

Since P1(t) ≤ P∞
1 for all values of t , we have

t P∞
1 >

∫ t

0
P1(t ′) dt ′ ∼ 1

uN
,

which gives us

t >
1

uN P∞
1

.

For neutral mutants this yields t >
√

λ/(uNβ), and for disadvantageous mutants
we have t > (µ − λ)/(uNβ). In both cases we can see that because of conditions
(9) or (10), we have for the time-scale of interest,

t � tc. (26)
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Therefore the function P1(t) under the integral in Eq. (17) can be replaced by its
saturated value:

P2(t) = 1 − e−uN P∞
1 t .

This means that the rate of tunneling, R0→2 = Nu P∞
1 in Eqs. (12–14) is given by

R0→2 = Nu

[
1 − 1

2λ
(λ + µ + β) −

√
(λ + µ + β)2 − 4λµ

]
. (27)

We can simplify this expression in the following limiting cases:

• Disadvantageous mutants “B,” that is, µ < λ and β(λ + µ) 	 (λ − µ)2.
In this case, we have

R0→2 = uN
β

µ − λ
= uu1r N

1 − r
. (28)

• Neutral mutants “B,” that is, β(λ + µ) � (λ − µ)2. We have

R0→2 = uN
√

β/λ = u
√

u1 N . (29)

Tunneling is the dominant process if the inequality R0→1 	 R0→2 holds,(38) which
is equivalent to condition ρ 	 P∞

1 . A simple calculation shows that this can be
rewritten in the following way:

N � Ntun, (30)

where in the case of disadvantageous mutants,

Ntun = log u1 + 2 log[r/(1 − r )]

log r
, (31)

and in the case of neutral mutants,

Ntun = 1√
u1

. (32)

2.5. Mass Action Model: Beyond Tunneling

Let us now investigate what happens when condition N � Ncg breaks down.
For these very large values of N , inequality (26) is reversed. Now, for the relevant
time-scales, the function P1(t) has not approached it saturation value. In fact, in
this case we can simplify the exponent in Eq. (17) by replacing the function P1(t)
with its short-time approximation, see Refs. 30 and 38. We write

P1(t) ≈ P1(0) + t
d P1(0)

dt
= tξ1(0).
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The value ξ1(0), the probability to transfer to state E from state 1 during the
time-interval (0, �t) is known, see Eq. (19), ξ1(0) = β. Using Eq. (17), we obtain

P2(t) = 1 − exp

(
− Nuu1r t2

2

)
. (33)

As expected, this is not a solution of system (12–14).

3. A SPATIAL MODEL

The models described above assume perfect mixing in the population of
cells. There is no information about spatial locations, and no spatial dynamics.
This may not be a shortcoming if we talk about liquid tumors (like leukemia).
However in a discussion of solid tumors spatial considerations must play a role.
Many spatial mechanistic models of cancer spread have been proposed (e.g., see
the reviews 1–3, 7, 8). These are examples of a large body of literature on PDE-
based spatial deterministic models. Such models typically do not take account
of the evolutionary nature of cancer growth. The stochastic evolutionary nature
of biological systems is now becoming of interest for the applied mathematics
community, see e.g. Ref. 4. Here we concentrate on the stochastic aspect of
evolutionary cellular dynamics of cancerous mutations.

As an attempt to include spatial considerations in the stochastic evolutionary
dynamics of malignancy, we have designed a one-dimensional spatial generaliza-
tion of the mass-action Moran birth-death process.(17) The cells are aligned along
a regular grid, at locations 1, 2, . . . , N , see Fig. 2. As before, we assume that the
total number of cells does not change. Cells are randomly chosen for death. Each
cell death is followed by a cell division of one of its two neighboring cells, which
places its daughter cell at the empty slot. Cell death occurs randomly and division
is proportional to the relative fitness of the cells.

3.1. Two-Species Dynamics

As in Sec. 2.2, we first study diagram (2) with u = 0. Let us assume that there
is a mutant cell with the relative fitness r at position j . The mutant cell produces
mutant cells upon reproduction. Wild-type cells produce other wild type cells (the
mutation rate is set to zero). If any cell at position 1, . . . , j − 2 or j + 2, . . . , N
dies, then there can be no change in configuration. A change can occur only in
two cases:

• Death occurs at position j , in which case the mutant disappears.
• Death occurs at position j + 1 or j − 1. Then the number of mutants can

increase by one if the mutant cell is chosen for division.
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Fig. 2. The Moran process generalized to the one-dimensional space: a cell is chosen for death
at random, and is immediately replaced by a division of one of the two neighboring cells (chosen
proportional to their fitness).

Similarly, if we have several mutant cells at sequential positions from i
through j , then a change of the number of mutants can only happen if death
occurs at positions i − 1, i, j or j + 1(see Fig. 2). In this model, a mutant colony
which originated as one cell can only occupy adjacent slots (a joint set). A change
in the position of this set can only be caused by cell death at its boundary.

We can characterize the states of the system by positions of the leftmost and
the rightmost mutants, i and j , such that

1 ≤ i ≤ j ≤ N . (34)

The transition matrix is given by the following. If the left boundary of the mutant
domain is at 1 (or the right boundary is at N ), then these boundaries cannot
move anymore. Otherwise, if the number of mutants is larger than one, then
the probabilities to expand the mutant domain to left and right are given by
Pi, j→i−1, j = Pi, j→i, j+1 = 1

N
r

1+r , and the probabilities to reduce the domain on

left and right are given by Pi, j→i+1, j = Pi, j→i, j−1 = 1
N

1
1+r . Finally, if there is only

one mutant (that is, i = j), then we have Pi,i→i−1, j = Pi,i→i,i+1 = 1
N

1
1+r , and the

probability to lose the mutant is 1
N . All the rest of the elements of the transition

matrix are equal to zero.
We can envisage the dynamics as a 2-dimensional Markov random walk

inside domain (34), with an additional absorbing state which can be reached from
the diagonal i = j ; this state corresponds to the extinction of the mutant and is
denoted by Ẽ . The other absorbing state is the fixation of the mutant, (0, N ). The
random walk is governed by the matrix above. We can set i to be the horizontal
and j the vertical coordinate of the position of the walker, and then the above
probabilities can be referred as P→

i j , P←
i j , P↑

i j and P↓
i j .
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3.2. Probability of Mutant Fixation

We can calculate the probability of absorption in (0, N ) starting from a state
(i, j), which we call ui j . We have the following system of equations,

ui j = ui−1, j P← + ui+1, j P→ + ui, j−1 P↓ + ui, j+1 P↑

+ ui j [1 − (P← + P→ + P↓ + P↑)], 1 < i < j < N ,

u1 j = u1, j+1 P↑ + u1, j−1 P↓ + u1 j [1 − (P↑ + P↓)], 1 < j < N ,

u1N = ui−1,N P← + ui+1,N P→ + ui N [1 − (P← + P→)], 1 < j < N ,

u j j = u j−1, j P← + u j, j+1 P↑ + u j j [1 − (P← + P↑ + P Ẽ )], 1 < j < N ,

u11 = u12 P↑ + u11[1 − (P↑ + P Ẽ )], (35)

uN N = uN−1,N P← + uN N [1 − (P← + P Ẽ )], (36)

u1N = 1.

The quantities uii are probabilities of fixation starting from one mutant at position i .
The results for this model must be compared with the probabilities of fixation

in the mass-action model, Eqs. (6) and (7). Numerical solutions for the probabilities
of absorption show that quantities uii are symmetric one-hump functions which are
flat except for narrow boundary regions near i = 1 and i = N .(17) In order to find
expressions for the “inner” values of fixation probabilities, we note the following.
If point (i, j) is sufficiently far away from the boundary, then the boundary effects
are not felt and ui j only depends on | j − i | rather than on the initial position of
the mutant interval. In order to solve the problem away from the boundary, we can
use the periodic boundary conditions, which is equivalent to replacing Eqs. (35)
and (36) with the following:

u11 = u12 P↑ + u11[1 − (P↑ + P Ẽ/2)], (37)

uN N = uN−1,N P← + uN N [1 − (P← + P Ẽ/2)]. (38)

Now, quantities ui j do not depend on the position of the mutant interval, but only
on its length. Let us denote by π j the probability that the mutant will reach fixation
starting from a mutant interval of length j + 1. We have a self-consistent system
of equations for the probabilities πi ,

π1(P↑ + P↓) = P↑πi+1 + P↓πi−1, 0 < i < N − 1, (39)

π0(P↑ + P Ẽ/2) = P↑π1, (40)

πN−1 = 1. (41)
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This system can be solved by setting πi ∝ αi , and finding α = 1 and α =
P↓/P↑ = 1/r . Therefore, we have

πi = A + B/r i ,

and the constants A and B are found from the boundary conditions,

A =
(

1 − r + 1

r N−1(3r − 1)

)−1

, B = r N−1(r + 1)

1 + r + r N−1 − 3r N
.

The probability to reach fixation starting from only one mutant cell is given by
ρspace ≡ π0 = A + B. We have,

ρspace = 2r N−1(1 − r )

1 + r + r N−1 − 3r N
.

We can compare this quantity with the fixation probability, ρ, in the mass-action
model,

ρspace = ρ
2r (1 − r N−1)

1 + r + r N−1 − 3r N
. (42)

In particular, for neutral mutants such that |r − 1| 	 1/N , we have

ρspace = ρ = 1/N .

For large values of N , we obtain, in the case of advantageous mutants (r >

1, |r − 1| � 1/N ),

ρspace = 2r

3r − 1
ρ < ρ, (43)

and in the case of disadvantageous mutants (r > 1, |1 − r | � 1/N ) we have

ρspace = 2r

1 + r
ρ < ρ. (44)

3.3. Three-Species Dynamics

Next, let us formulate the dynamics for a three-species model, diagram (1), in
a one-dimensional space. Again, we will use a homogeneous state approximation,
and describe the behavior of the system by means of Eqs. (12–14). The applicability
conditions for this approximation are now somewhat more restrictive and they are
derived in Sec. 3.4. The rate constants R0→1 and R1→2 can be calculated in the
same way as for the non-spatial model. We have, instead of formula (15),

R0→1 = Nuρspace = Nu
2r N (1 − r )

1 + r + r N − 3N+1
, (45)
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where ρspace is the probability of successful fixation of a mutant starting from
one cell of type “B.” Approximations for neutral and disadvantageous mutants are
given by formulas (43) and (44). Similarly, we calculate the second rate in the
two-step process, which is the same as in the mass-action model, Eq. (16),

R1→2 = Nu1. (46)

Finally, we need to find the tunneling rate, R0→2.

3.4. The Tunneling Rate in the Spatial Model

In order to find the rate of tunneling, we again use the doubly-stochastic
approximation, formula (17). Each (independent) lineage of type “B” spreads as
a one-dimensional connected spot. The size of the spot is given by the random
variable i . The state i = 0 is equivalent to the state Ẽ of Sec. 3.1, i.e. the extinction
of the mutant. The state i = E corresponds to the creation of a mutant of type “C.”
The probability P1(t) in formula (17) is the probability to acquire a second mutation
among the lineage of a single cell of type “B.” Let us introduce a short-hand nota-
tion, r̃ = r/(r + 1). Then for the dynamics within a lineage, the transition proba-
bilities are given by: Pi→i+1 = r̃ (1 − u1) for 0 ≤ i ≤ N − 1, Pi→i−1 = 1/(r + 1)
for 1 ≤ i ≤ N , P1→0 = 1/2, PN→N = N (1 − u1), Pi→E = 4r̃u1 + (i − 2)u1 for
3 ≤ i ≤ N , P2→E = 4r̃u1, and P1→E = 2r̃u1, where time is measured in terms
of generations. In what follows we will simplify the problem so that the transition
probabilities are:

Pi→i+1 = λ, Pi→i−1 = µ, Pi→E = βi. (47)

These are spatial analogues of formulas (18). Note that in formulas (18), the
coefficients λ, µ and β were obtained by taking the lowest order term in the Taylor
series in terms of the small i /N . In formula (47), the probabilities represent a
“model” of the real situation rather than an approximation. Indeed, in Eqs. (47),
with

λ = r̃ (1 − u1), µ = 1/r (r + 1), β = 3r̃u1,

we neglect several subtleties that we discovered for spatial propagation of mutants.
For instance, we ignore the fact that P1→0 �= Pi→i−1 for i > 1. We also ignore
the fact that the probability for exiting into state E from state i is not exactly
proportional to i : for i < 3 it does not depend on i , and for larger i it has a
constant (in i) term.

We will use the same method as we developed for the mass-action system.
Let us denote by ξi (t)�t the probability to be absorbed in E during the interval
(t, t + �t) starting from i at t = 0. We have the following equations for ξi :

ξ̇i = λξi+1 + µξi−1 + βiξE − (λ + µ + βi), 2 ≤ i,
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with the boundary condition

ξ̇1 = λξ2 + µξ0 + βξE − (λ + µ + β)ξ1,

with ξ0 = ξE = 0, and the initial condition

ξi (0) = iβ.

The Laplace transform yields the system,

[λ fi+1 + µ fi−1 − (λ + µ + s) fi ] − fiβi = −iβ, i > 1, (48)

[λ f2 − (λ + µ + s) f1] − f1β = −β. (49)

This is similar to an inhomogeneous discrete Airy equation. Let us denote

hi = fi − 1,

and set µ = λ − ε. We have for the function hi ,

λ(hi+1 − 2hi + hi−1) + ε(hi − hi−1) − shi = βihi , (50)

λ(h2 − h1) − h1(λ − ε + β + s) = λ − ε. (51)

Using the continuous limit, we obtain the system

λh′′ + εh′ − sh = βxh, (52)

λh′(0) − h(0)(λ − ε + β + s) = λ − ε; (53)

for the second boundary condition we use the boundedness of the solution for
large x . This system can be solved exactly in terms of the Airy function Ai and
its derivative. Here we present the stationary solution corresponding to s = 0. We
have

h(x) = 2e−εx/(2λ)(ε − λ)Ai[K (x)]

(2β − ε + 2λ)Ai[K (0)] − 2β(β/λ)−2/3 Ai ′[K (0)]
,

K (x) = ε2 + 4βλx

4(β/λ)2/3λ2
.

Setting x = 0, we obtain

h(0) = 2(ε − λ)

2β − ε + 2λ − 2β(β/λ)−2/3 R

([
ε

2λ(β/λ)1/3

]2
) , R(z) = Ai ′(z)

Ai(z)
.

Depending on the fitness of type “B,” this expression has a different limiting
behavior. We consider these two cases:

• Type “B” is disadvantageous: ε < 0 and ε � (β/λ)1/3. In this case, the
argument of the function R(z) tends to infinity and we can use the standard
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asymptotic expansion of the Airy function and its derivative for a large

argument. We obtain h(0) = −1 + (λ−µ)2+λ2

(λ−µ)2µ
β, or f (0) = 1 + h(0) =

P∞
1 = (λ − µ)2 + λ2

(λ − µ)2µ
β = 3ru1

(r − 1)2 + r2

(r − 1)2
. (54)

This rate has the same order of magnitude as the corresponding rate in the
non-spatial calculation, Eq. (24).

• Type “B” is neutral, that is, ε 	 (β/λ)1/3. In this case, the argument of the
function R(z) tends to zero. We obtain

P∞
1 =

(
3β

λ

)1/3
	(2/3)

	(1/3)
= (9u1)1/3 	(2/3)

	(1/3)
. (55)

This rate is larger than the one found for the neutral mutant in the mass-
action model, see expression (25).

Now we can calculate the tunneling rate. We will use the same method as
in Sec. 2.4. Suppose tc is the time where the function P1(t) comes close to its
saturation value, P∞

1 (the values for tc are found in Ref. 17). Again, we will set
the time-scale of the process such that the probability of acquiring a mutant of
type “C” is of the order one. This is equivalent to the estimate t ∼ 1/(P∞

1 uN ),
see Eq. (17). The condition t � tc will guarantee that the tunneling rate is sim-
ply uN P∞

1 . For the case of disadvantageous mutants, this condition is identical
to

uN 	 r − 1

r + 1
. (56)

In the case of neutral mutants, we obtain

uN 	
(u1

3

)1/3
(

	(1/3)

	(2/3)

)2 r

r + 1
. (57)

If these conditions are satisfied, then the tunneling rate, R0→2 = Nu P∞
1 is given

by

R0→2 = Nu

⎡
⎢⎢⎣1 + 2(ε − λ)

2β − ε + 2λ − 2β(β/λ)−2/3 R

([
ε

2λ(β/λ)1/3

]2
)

⎤
⎥⎥⎦ ,

R(z) = Ai ′(z)

Ai(z)
. (58)
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The limiting behavior is as follows:

• Type “B” is disadvantageous: r < 1 and 1−r
1+r � (3u1)1/3. If condition (56)

holds, then the tunneling rate is given by

R0→2 = 3r Nuu1
(r − 1)2 + r2

(r − 1)2
. (59)

• Type “B” is neutral, that is, 1−r
1+r 	 (3u1)1/3. If condition (57) holds, then

the tunneling rate is given by

R0→2 = uN (9u1)1/3 	(2/3)

	(1/3)
. (60)

Note that the rate of tunneling in the case of disadvantageous mutants, (59), is
always larger than that for the mass-action model, Eq. (28). It has the same order
of magnitude in terms of small u1. Regarding the case of neutral mutants, it is
interesting that the rate of tunneling in the spatial model, (60), has a larger order
of magnitude than that in the mass-action model, Eq. (29). In both cases, tunneling
happens faster in the spatial model compared to the mass-action model.

It is instructive to discuss the definition of neutrality in different models. It is
the same for spatial and mass-action descriptions in the regime where a two-step
process dominates (or if we have only two types, “A” and “B” in the system). In
this case mutants with fitness satisfying |1 − r | 	 1/N can be considered neutral.
Indeed, in the expansion of the fixation probability of a mutant in terms of r
around the value r = 1, the highest order term is given by 1/N , and the next
term is (N − 1)(r − 1)/2N without spatial effects, and (N − 1)2(r − 1)/2N 2 in
the spatial model. The smallness of the second term compared to the first term is
a criterion of neutrality.

The meaningful definition of neutrality changes in the regime where tunneling
is important. There, it is not the time-scale of fixation, but rather the rate of
tunneling which is the dominant factor. Now, the definition is different in the
spatial model compared to that in the mass-action model. In the latter case, neutral
mutants were defined by the condition

|1 − r | 	 √
u1. (61)

In the spatial case, we have

|1 − r | 	 (3u1)1/3. (62)

That is, a larger region of fitnesses around r = 1 qualifies as neutral.
The relative importance of tunneling can be obtained by comparing the

rates R0→1 and R0→2. As in the mass-action model, condition (30) implies that
typically, mutants of type “C” are generated before fixation of type “B” occurs.
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For disadvantageous mutants of type “B,” Ntun is given by

Ntun = log

[
3

2

u1r (r + 1)[(r − 1)2 + r2]

(r − 1)3

] /
log r. (63)

In the case of neutral intermediate mutants, we have

Ntun = 	(1/3)

	(2/3)

1

(9u1)1/3
, (64)

to be compared with formula (32) for the mass-action model. We can see that
Ntun is always smaller for the spatial model compared to that for the mass-action
model.

Conditions (56) and (57) define whether the homogeneous state approxima-
tion holds. They are a stronger version of the conditions (9, 10) which were derived
for the mass-action model. There, in order to be able to approximate the system
by three long-lived states, it was enough to require that the first mutation rate is
small compared to 1/N . Now, an additional factor comes in. The conditions for
applicability of system (12–14), inequalities (56) and (57), can be written as one
condition,

N 	 Ncg = 1

u
max

{
1 − r

1 + r
, (3u1)1/3

}
. (65)

3.5. Spatial Model: Beyond Tunneling

If condition (65) is violated, then the tunneling in this case happens according
to a different scenario, and system (12–14) does not apply. In particular, for very
large values of N � Ncg , the relevant time-scale is very small compared to the
saturation time, tc, and the function P1(t) can be approximated as a linear function
of time, P1(t) ≈ ξ1(0)t , in a way similar to Sec. 2.5. We have ξ1 = β, and this
gives us

P2(t) = 1 − exp

(
−3Nuu1r t2

2(r + 1)

)
. (66)

4. A HIERARCHICAL MODEL

Spatial locations are not the only factor determining the nature of cellular
interactions and competition. Another important aspect is a hierarchical structure
of cell populations.

This is indeed a common feature of many epithelial tissues. Some cells,
called the progenitor, or stem, cells have a large proliferation capacity. Stem cells
replenish the organ tissue by means of asymmetric divisions. Upon reproduction,



434 Komarova

a stem cell gives rise to another stem cell, and a daughter cell with different
properties. This asymmetric division pattern ensures that there is always a stem
cell present which is kept as a “blueprint” throughout the life of the organism.
Daughter cells (also called “partially differentiated cells,” “transient cells,” or
“committed cells”) divide symmetrically. Their division capacity is limited, that
is, after a few divisions they become “fully differentiated,” stop reproducing and
eventually undergo apoptosis.

Here we will discuss a stochastic model of stem and daughter cell dynamics
introduced by Ref. 20 and further developed by Ref. 18. Other models which
distinguish between stem cells and differentiated daughter cells have also been
analyzed.(5,28,32,39)

4.1. Model Description

Here we present a finite branching process model of epithelial cell turnover,
which explicitly includes the processes of apoptosis, renewal, differentiation and
mutation. In our model, we assume that cancerous mutations can be acquired in
both stem and daughter cells, consistent with the thinking of Ref. 6.

Again we denote the total population size as N . For simplicity we will assume
that there is only one stem cell; this assumption can be removed, see Ref. 18.

At each moment of time, there is exactly 1 stem cell and N − 1 daughter
cells, see Fig. 3. For each daughter cell, we keep track of how many divisions it
has gone through. It is convenient to introduce the quantity l, the total number of
division rounds before final differentiation. This number includes one asymmetric
division of the stem cell and l − 1 rounds of symmetric divisions of the daughter
cells. After l divisions, a daughter cell is considered fully differentiated, and it is
unable to divide further. For simplicity we assume that N = 2l , that is, the number
N is a power of 2. There is always one first generation daughter cell, two second
generation daughter cells, . . . , 2l−1 daughter cells of generation l.

Let us set up the following process. At each (discrete) time-step, there are
N /2 synchronized cell divisions; the dividing cells include the stem cells and all

Stem cells

Generation 1 daughter cell

Generation 2 daughter cells

Generation       daughter cellsl

Fig. 3. A stem cell (black) gives rise to a branching tree of daughter cells.
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the daughter cells except the fully-differentiated, generation l cells. The result of
each stem cell division is a stem cell and a (first generation) daughter cell. The
result of each daughter cell division is two daughter cells of the next generation.
To keep the population size constant, the N /2 divisions are accompanied by N /2
deaths of the fully differentiated cells. Both stem and daughter cells can be of
type “A,” “B” and “C.” At each cell division, there is a probability of mutation,
according to diagram (1).

Note that in some sense this model is less general than the mass-action and
spatial Moran processes described in the previous sections. Indeed, to preserve
the hierarchical structure, we consider synchronized cell divisions, and restrict
the value of the fitness of type “B” to r = 1. Positively and negatively selected
intermediate mutants is a subject of future research.

4.2. Probability of Mutant Fixation in the Two-Species Model

The two-species model in this case can be defined, and the probability of
mutant fixation can be obtained very simply. Indeed, if a daughter wild type cell
undergoes a mutation, the mutants will be washed out after less than l cell divisions.
However, if a mutation happens in the stem cell, then after l cell divisions, the
entire population will be of type “B.” Therefore, the probability of mutant fixation
starting from one cell is equal to 1/N . This result coincides with that for the
mass-action and spatial models, in the case of neutral mutations (r = 1).

4.3. Three-Species Dynamics

Next, let us discuss the three-species model. As in the previous sections, we
suppose x0 is the probability that the whole population is wild type (type “A”).
Similarly, x1 is the probability to find the entire population consisting of single-
mutants, type “B,” and the probability to have at least one cell with a double
mutation (type “C”) is denoted by x2. If the mutation rates are small compared
to the inverse of the total population size, the inhomogeneity condition holds (see
Ref. 19), and we have Eq. (11). This means that the system spends most of its time
in the homogeneous states, and the transitions between them (when cells are of
different types) are very fast.

Indeed, once the first hit has taken place in a stem cell, it takes only log2 N cell
divisions before the entire population becomes homogeneous with respect to the
phenotype “B.” This should be compared to the typical number of cell divisions
before a mutation in a stem cell occurs, which is given by u−1. Similarly, if the
first hit occurs in one of the daughter cells, it takes less than log2 N cell divisions
before one of the two things happen: either the mutants are washed out, and the
system returns to the wild-type state, or a second hit is acquired, which puts the
system in the x2 state. In fact, a stronger statement can be made: in the majority of
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cases, a mutation in a daughter cell will happen only 1 or 2 steps away from either
being shed off or converted to the “C” phenotype. Indeed, only N/2k−1 − 1 out of
N cells are k steps or more away from being shed off. Therefore, the characteristic
number of steps spent in a non-homogeneous state as a result of a first-hit mutation
in a daughter cell is of the order one. This has to be compared with the typical
waiting time until a mutation in one of the daughter cells is acquired, which is
given by [(N − 1)u]−1. We can see that as long as

u 	 [N − 1]−1, (67)

the transition x0 → x1 is fast. In the same way we can reason that as long as

Nu1 	 1, (68)

the transition x1 → x2 is fast. If these conditions hold, then the states x0, x1 and
x2 are long-lived, and the simplified, coarse-grained description, system (12–14),
can be used.

Before we go on, we would like to give an intuitive interpretation of the
dynamics of Eqs. (12–14) in the context of the hierarchical model. There are three
ways in which mutations can be accumulated, see Fig. 4.

1. In the ss scenario (for “stem-stem,” Fig. 4(a)), a mutation happens in the
stem cell. Then, after a few divisions, the entire population will consist of
mutated cells. At some point, a second mutation occurs in the stem cell,
shortly after which the entire population will consist of double mutants.

2. In the sd scenario (for “stem-daughter,” Fig. 4(b)), again a mutation occurs
in the stem cell which then spreads throughout the population. However,
the first double-mutant emerges in the proliferating/migrating compart-
ment. This mutant divides and its progeny spreads in the upward direction.

3. In the dd scenario (for “daughter-daughter,” Fig. 4(c)), a mutation occurs
in one of the migrating daughter cells. The cell divides, its progeny moves
in the upward direction, but before it is washed out, one of these cells
experiences a second hit, creating a double mutant.

Scenarios ss and sd above are similar in spirit to the two step process of the
mass-action model, Fig. 1(a), and scenario dd is equivalent to tunneling, Fig. 1(b).

Now, let us calculate the transition rates of system (12–14). We have,

R0→1 = u (69)

is the rate of transition between states x1 and x2 and

R1→2 = Nu1 (70)

is the rate of transition between states x1 and x2. These rates describe cellular
processes (1) and (2) above, which we call scenarios ss and sd. The third scenario,
dd, happens at the rate R0→2; this scenario takes place when both hits occur in
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Fig. 4. The three scenarios of generating a double mutant. In these diagrams, the stem cells are marked
as black circles. Cells containing a single mutation are denoted by circles crossed once. Double mutants
are criss-crossed gray circles. (a) The ss scenario: both mutations occur in the stem cell. (b) The sd
scenario: the first mutation happens in the stem cell and the second hit is acquired by one of the
daughter cells. (c) The dd scenario: the first mutation hits one of the daughter cells, and before its
progeny is shed away, the second mutation is acquired. For each scenario, the important states (x0, x1

and x2) are marked.

a daughter cell, so a fixation in the x1 state does not happen. Let us calculate the
rate R0→2.

4.4. The Tunneling Rate in the Hierarchical Model

To calculate the rate R0→2, let us write down the probability to have at
least one mutant such that both mutations happen in a daughter cell (given that
no stem cell mutations have happened). We assume that the mutation rate, u,
is sufficiently small such that the mutant clones can be treated independently
(the condition is uN 	 1), and consider a doubly stochastic process. Let us write
down the total rate of primary mutations,

∑l
i=1 u2i−1 = uN . Then the contribution

corresponding to the first mutation happening in a daughter cell of generation i is
given by ri = u2i−1. Let us denote by Pi the probability to get a second hit in a
“secondary” stochastic process which happens in the clone after the first mutation.
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Inside such a clone, we have 2l−i+1 − 2 cell divisions, so that the total probability
to get a second hit is

Pi = 1 − (1 − u1)2l−i+1−2 ≈ 1 − e−u1(2l−i+1−2).

We obtain

R0→2 =
l∑

i=1

riPi ,

which gives

R0→2 = u
l∑

i=1

2i−1(1 − exp[−u1(2l−i+1 − 2)]), l = log2 N . (71)

The expression for the tunneling rate, R0→2, can be simplified. For instance,
if we assume that u1 N 	 1, we can expand the expression under the summation
sign in terms of this small parameter to obtain

R0→2 ≈ uu1[(log2 N − 2)N + 2].

This approximation works very well for small values of N , for all realistic values
of u1. However, if the quantity N is large, then this approximation breaks down
for high values of the mutation rate, u1. In this case it is convenient to replace the
summation in Eq. (71) with an integral. Indeed, we can define x = 2i−1/N , and set
formally 2i−1�i = N

log2�x . In the limit of very large N , this can be approximated
by a differential, so that we have

R0→2 ≈ uN

log 2

(
1

2
− 1

N
− e2u1

∫ 1
2

1
N

e−u1/x dx

)
. (72)

The integral can be evaluated in terms of the incomplete Gamma function,
	(α, z) = ∫ ∞

z tα−1e−t dt :

R0→2 = ue2u

log 2
[−e−2u1 + e−Nu1 + Nu1(	(0, 2u1) − 	(0, Nu1))].

In the limit Nu1 � 1 we have further simplifications:

R0→2 = Nuu1

log 2
(| log(2u1)| − γ ).

The relative contribution of the two-step and tunneling processes can be deter-
mined. Tunneling is the dominant process if R0→1 	 R0→2, which is equivalent
to the condition N � Ntun, where N = Ntun is the solution of equation R0→2 = u.
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Note that under the condition Nu1 � 1, this equation can be solved to yield

Ntun = log 2

u1(| log(2u1)| − γ )
. (73)

We can see that if condition (68) breaks down, then Eq. (73) holds, and more-
over we have N � Ntun. This means that in this case, the main process is
x0 → x2, fixation in state x1 never occurs, and condition (68) is in fact irrele-
vant. Therefore, we conclude that condition (67) is sufficient for validity of system
(12–14):

Ncg = 1/u. (74)

5. SUMMARY

In this paper we discussed stochastic cellular dynamics in populations
with a constant number of cells, relevant to cancer initiation and progres-
sion. We concentrated on two important patterns. One is loss-of-function mu-
tations characteristic of tumor suppressor gene inactivation, see diagram (1).
The other is gain-of-function mutations, such as oncogene activation, see
diagram (2).

We studied three models of cellular birth and death dynamics. In the mass-
action model, initially all cells are identical (type “A”), and their properties do not
depend on their spatial locations. A cell death is immediately followed by a cell
division of a cell chosen at random, proportional to its fitness. The corresponding
constant-population birth-death process is called the Moran process. In the spatial
model, we keep track of spatial locations of cells on a one-dimensional regular
grid. A dead cell in this model can only be replaced by the offspring of one of its
neighbors. Finally, a hierarchical model includes a stem cell and daughter cells.
The stem cell divides indefinitely and cannot die. For each daughter cell we keep
track of the number of divisions it has gone through. After a fixed number of
divisions, the daughter cell is destined to die.

5.1. Gain-of-Function Mutations

For gain-of-function mutations, we considered the dynamics of fixation of
type “B,” diagram (2). For all the models, the probability that the offspring of one
cell of type “B” will reach fixation is given by 1/N , as long as the fitness of type
“B” is equal to that of type “A.” If the fitness of type “B” is smaller or larger than
that of type “A,” then the probability of fixation is always bigger in the mass-action
model compared to the spatial model, see Fig. 5.
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Fig. 5. The quantity ρspace/ρ, formula (42), as a function of r for N = 1000. This quantity tells us
how much less likely a mutant fixation is in the spatial model compared to the mass-action model.

5.2. Loss-of-Function Mutations

For loss-of-function mutations, we studied the dynamics of the acquisition of
a second hit, diagram (1). Under certain conditions, the dynamics can be described
by a coarse-grained system, (12–14), which represents Markovian hops between
only three states. The first state is all “A,” the second one is all “B” and the third
one, at least one cell of “C.” This simple description holds as long as N is not too
large, N 	 Ncg , where the formulas for Ncg are given by Eqs. (10), (65) and (74)
for the three models, respectively.

Within the region of applicability of system (12–14), we have two different
regimes. If N 	 Ntun, then the dynamics is a genuine two-step process. First, there
is a fixation of the intermediate mutant, “B,” and only after that a cell of type “C”
appears. The probability to have at least one cell of type “C” is given by

P2(t) = 1 − R0→1e−R1→2t − R1→2e−R0→1t

R0→1 − R1→2
.

The values of the coefficients are as follows:

R0→1 = Nuρ,

where ρ is the probability for type “B” to reach fixation starting from one cell;
one should use ρspace for the spatial model and 1/N for the neutral hierarchical
model. We have R1→2 = Nu1 for all models.

The value Ntun is calculated in Eqs. (31) and (32) for the mass-action model,
Eqs. (63) and (64) for the spatial model and for the hierarchical model it is given
implicitly by equation R0→2 = u with R0→2 in Eq. (71).

The second regime is defined by the inequality Ntun 	 N 	 Ncg . There, we
have the process of tunneling, where the all “B” state never reaches fixation before
a mutant of type “C” appears. In this regime, the probability of creation of a type
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Fig. 6. The tunneling rate, R0→2 as a function of u1, for the three models. We assume that the
intermediate mutants are neutral. The parameters are N = 103 and u = 10−5.

“C” mutant is given by

P2(t) = 1 − e−R0→2t .

The tunneling rate is given by Eq. (27) for the mass-action model; the simplified
equations for the cases of neutral and disadvantageous mutants of type “B” are
given by Eqs. (28) and (29). For the spatial model, R0→2 is calculated in Eq. (58),
and the limiting behavior is given by Eqs. (59) and (60). For the hierarchical model
we have Eq. (71). All the rates (in the case of neutral mutants) are presented in
Fig. 6. We can see that the rate of tunneling is the lowest in the hierarchical model,
and the highest in the spatial model.

The different regions of behavior are shown in Fig. 7. Line 1 corresponds to
Ntun for the spatial model, line 2 to Ntun for the mass-action model, line 3 to Ncg

for the spatial model, line 4 - to Ntun for the hierarchical model, and line 5 to Ncg

for the mass-action and the hierarchical models. For each of the models, we shaded
the tunneling region, Ntun < N < Ncg . Below this region, we have a genuine two-
step process, and above this region the coarse-grained description breaks down,
resulting in behavior described by Eqs. (33) and (66) for the mass-action and
spatial models.

5.3. Which Model Produces Mutants Faster?

The two-step process is characterized by two coefficients, R0→1 and R1→2.
The value of R1→2 is the same in all models. Let us compare the behavior of the
mass-action and the spatial models. We have shown that the two-step rate, R0→1,
is larger the mass-action model (unless r = 1), and the tunneling rate R0→2 is
always larger in the spatial model. The question is, in which model does the first
mutant of type “C” appear faster?
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Fig. 7. Tunneling regions for the three models, under the assumptions u = u1 and r = 1. The region
with a right-slanted pattern corresponds to the spatial model, the region with a left-slanted pattern—to
the hierarchical model, and the vertical stripes to the mass-action model. For each model, the values
of N below the patterned region correspond to a genuine two-step process. For values of N above the
patterned region coarse-grained description (12–14) breaks down, and we have Eqs. (33) and (66).

The following results are obtained readily from our theory. In the case of neu-
tral intermediate mutants (Fig. 7), the system is in the tunneling regime between
lines 2 and 3, for both mass-action and spatial models. In this regime, the spatial
model produces mutants of type “C” faster. Below line 1, both models are in the
two-step regime, and there the rates are the same, so there is not much differ-
ence between the two models. If the intermediate mutant is disadvantageous (not
shown), then for low values of N (the two-step regime), the mass-action model
will generate “C” mutants faster.

Next, let us compare the behavior of the hierarchical and mass-action models.
The rate R0→1 is the same, and the tunneling rate is larger in the mass-action model,
Fig. 6. Below line 2 in Fig. 7, both models behave similarly, as tunneling does not
make a significant contribution in that regime. Between lines 4 and 5, both models
are in the tunneling regime, and the mass-action model will produce mutants
faster. Between lines 2 and 4, the mass-action model functions in the tunneling
regime, while the hierarchical model is still in the two-step mode. Therefore, the
mass-action model will be characterized by a faster rate of producing “C.”

Finally, we can compare the hierarchical and spatial models. Below line 1,
both models are in the two-step regime, and both models act similar to one another.
Between lines 1 and 3, the spatial model is in the tunneling regime, and it will
produce mutants a lot faster. Note that line 3, the value Ncg , depends on u. If we
assume that u < u1, then line 3 will move up and the region where we can compare
the two models will be larger. In any case, between lines 3 and 5, the spatial model
produces double-mutants according to law (66), while the hierarchical model is
either in a two-step, or in a tunneling regime with a comparatively low rate of
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tunneling. We conclude that in the region, the spatial model generates mutants
faster.

6. DISCUSSION

We have shown that stochastic cellular dynamics of mutation-selection dia-
grams (1) and (2) strongly depend on the details of modeling. For advantageous
or disadvantageous gain-of-function mutations, the probability of fixation is lower
in the spatial model. It is the same in all three models for neutral mutations.

For loss-of-function mutations with neutral intermediate mutants, there is not
much difference among the models as long as the population size is smaller than
Ntun in the spatial model, see formula (64) or line 1 in Fig. 7. However, for larger
population sizes, the spatial model is characterized by the fastest production of
double mutants, followed by the mass-action model. For disadvantageous inter-
mediate mutants, the spatial model is the slowest for low values of N (lower than
Ntun given by (63)); it is again the fastest for larger values of N .

The difference in the predictions of the three models can be quite substantial.
For instance, if we take u = u1 = 10−5 and N = 104, after 100 generations the
probability to have started a colony of type “C” is given by ph = 2 × 10−3 in the hi-
erarchical model, pm−a = 3 × 10−2 in the mass-action model and psp = 2 × 10−1

in the spatial model. For parameter values u = u1 = 10−6, and the same colony
size, we have after 1000 generations: ph = 10−3, pm−a = 10−2 and psp = 10−1.
We can see that the three models result in an order-of-magnitude difference in
their predictions. One could envisage the following experiment where these cal-
culations can be verified. Suppose we have a cell culture where space is a limiting
factor such that the cells are in competition with each other. Various degrees of
cellular mixing can be attained by putting cells in different environments. Suppose
all cells are of type “A” at the beginning, and type “C” cells are marked for an easy
detection (e.g. with GFP, the green fluorescent protein). After a fixed number of
generations, we can determine the number of cultures which developed clones of
type “C” cells. This should be compared with the quantities pm−a, psp and ph to
see which model gives a better fit.

A lesson that we learn from the three models analyzed in this paper is that both
space and cellular hierarchy are important. Therefore, one must be cautious and
instead of using the simplest, mass-action model, examine carefully if the spatial
or hierarchical considerations should be included. For instance, when modeling
the initiation of cancers of the blood, spatial considerations do not enter in the same
way as in solid tissues, while cellular hierarchy is definitely present; therefore, the
hierarchical model must be implemented. In solid tumors during latent periods
before a clonal expansion, cellular hierarchy may be unimportant but spatial
consideration must be taken into account, thus making the spatial model the tool
of choice.



444 Komarova

An important area of applications of multistage models of the kind presented
here, is the comparison with epidemiological data. Starting with early studies
of Knudson(16) until recent works of Moolgavkar and his group,(10,11,26,27) two-
hit and multi-hit models have been compared with age-incidence data on various
cancers. Usually, the goal of such research is to derive unknown system parameters
from fitting the model results with the age-incidence curves. There, the difference
between the three models can become very important.

Apart from this, our results also allow us to speculate about various types of
tissue architecture and its protective role against cancer. There are different ways of
keeping a cell population constant (homeostatic control). We have discussed three
ways of maintaining a constant cell number while allowing a cellular turnover.

In particular, we have shown that a hierarchical structure of tissue where a
small number of stem cells divide indefinitely and daughter cells only undergo a
limited number of divisions, minimizes the risk of generation of double mutants,
compared to homogeneous cellular populations. This is consistent with hierarchi-
cal tissue architecture of epithelial tissues such as colon, breast, and skin, and other
tissues such as blood. One of the reasons of such hierarchical tissue organization
may be that it lowers the risk of cancerous transformations.

Another interesting result concerns the spatial model. We have shown that
for cellular populations more than roughly 102, a spatial organization of cells
increases the rate of double mutant generation. We would like to discuss the
mathematical reasons for this result and also its possible implications. The reason
for this accelerated rate of double-mutant production compared to the mass-action
model is the very slow dynamics of single mutant cells. Let us look at the rate at
which the number of mutants of type “B” can decrease/increase in the two models,
see Eqs. (18) and (47). We notice that for the mass-action model, these rates are
larger as long as the number of mutants is greater than one. Indeed, in the spatial
model, cells of type “B,” once produced, form mutant “islands,” i.e. joint sets of
points of type “B.” The number of mutants can only change if a death occurs at
one of the two boundaries of such islands. In the mass-action model, a change in
the mutant number can occur upon death of any cell, followed by a reproduction
of any cell of the other type. Therefore, in the spatial model, once an island of type
“B” mutants is created, it tends to linger for a long time, serving as a platform for
creating a double mutant.

We can see that the feature of the spatial model that a cell can only be re-
placed by an offspring of its immediate neighbor, creates the problem of long-lived
mutant islands, which leads to very high tunneling rates of creating double mu-
tants. The same conclusions will hold for two-dimensional and three-dimensional
generalizations of the model. Therefore, this particular way of homeostatic con-
trol seems suboptimal. Instead, one can relax the assumption that the cells cannot
move and can only reproduce if there is a dead cell right next to them. We could
generalize this model such that upon a cell death, there is a nonzero probability of
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reproduction not only for its two neighbors, but also for cells k slots away from it.
This model will have properties intermediate between the mass-action model and
the spatial model discussed here, and it will be characterized by lower tunneling
rates compared to the first spatial model. Biologically this means that increased
cellular motility and nonlocal cellular interactions can play a protective role against
cancer.

Finally, we would like to describe an experimental setup which can be used to
check the predictions of the models and to extend and improve the spatial model. It
has been shown analytically that one of important components of the dynamics of
tumor-suppressor gene inactivation is stochastic tunneling. In order to measure the
intensity of tunneling, one could experimentally determine the frequency, size and
average life-span of type-“B” mutant “islands” that appear in a constant-population
culture. Such measurements can be related to the mathematical predictions for
the tunneling rate, and, even more importantly, this information can be used
to formulate two- and three-dimensional spatial stochastic models of cellular
dynamics.
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